

Docker-Exploration

Docker used for documentation : Docker CE (Community Edition)

[image: logo]

logo

[image: concept1]
concept1

	go to https://get.docker.com/

	take the script

	install it- easy-peasy

	curl -sSL https://get.docker.com/ | sh

Some Basic Docker Commands

	Command

	Description

	docker version

	Get the version information of docker.

	docker info

	Get info.

	docker images

	Get all available images in local repo.

	docker container ps /
docker container ps -a

	get running containers (-a all stopped &
running)

	docker container run -p
80:80 -d –name
test_container nginx

	Run a container with nginx at port 80.
bridge host IP 80 and container IP 80.

	docker container run –rm
-it image_name

	run container and automatically remove
upon close

	docker container logs
test_container

	get logs for mentioned container

	docker container top
test_container

	Get process/daemons running in the
container

	docker container rm …

	Remove stopped container. Containers to
be removed should be stopped.

	docker container rm -f

	Remove forcefully.

	docker container inspect
test_container

	details of container config

	docker container stats

	show stats mem usage, cpu usage etc.

	docker container run -it
–name test_name
image_name bash

	run container (-i –> interactive,-t –>
pseudo tty/ssh) and opens bash(changed
default commands)

	docker container start
-ai container_name

	starts existing (-ai start with given
starting command) container

	docker container stop
container_name

	stops existing container

	docker container exec
-it container_name bash

	open bash in already running container

	docker history
image_name:tag

	layer information of the image

Port

-p 8080:8080

[host_os_port : docker_container_port]

What happens behind docker run

[image: Image]

Image

Points to Notice

	containers aren’t mini VM’s, they are just processes(binary files)
running on HOST Operating Systems.

	Limited to what resource they can access.

	Exit when process is stopped

[image: concept2]

concept2

Examples

nginx

	docker pull nginx:latest

	docker run -p 80:80 –name nginx -d nginx:latest

	curl localhost

mongo

	docker pull mongo:latest

	docker run -p 27017:27017 –name mongo -d mongo:latest

	mongo –host localhost –port 27017

mysql

	docker pull mysql:latest

	docker run -p 3306:3306 –name mysql -e MYSQL_RANDOM_ROOT_PASSWORD=yes
-d mysql:latest

	get first random password from docker container logs mysql (GENERATED
ROOT PASSWORD)

	mysql -uroot -p[password from previous step] -h127.0.0.1 -P3306

or

	docker run -p 3306:3306 –name mysql -e
MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:latest

	mysql -uroot -p my-secret-pw -h127.0.0.1 -P3306

Docker Networks

[image: concept3]

concept3

	Command

	Description

	docker container port
container_name

	get port info

	docker container inspect
–format “{{
.NetworkSettings.IPAddress
}}” container_name

	get IP

	docker network ls

	show networks

	docker network inspect
net_name

	inspect a network

	docker network create
–driver

	create a network

	docker network connect
net_id container_id

	attach

	docker network disconnect
net_id container_id

	detach

	docker container run –name
c_name –network net_name
image_name

	specifying network name in container
while starting

	docker container run –name
c_name –net net_name
–net-alias alias_name
image_name

	specifying network name and alias in
container while starting (same alias
containers can be called with same DNS
name)

DNS Naming (inter container communication)

	containers cant rely on IP’s for inter-communication.

	bridge (default) doesnt have this option.

	one container can communicate with another in same network with
container name(instead of IP).

	it is easier in docker compose.

try this

	docker pull nginx:latest

	docker network create custom_network

	docker network ls

	docker run -it -d -p 8081:80 –network custom_network –name nginx2
nginx:latest

	docker run -it -d -p 8080:80 –network custom_network –name nginx1
nginx:latest

	docker container ls

	docker container exec -it nginx1 curl http://nginx2

IMAGE

	app binaries and dependencies

	metadata about image data or how to run the image

	An image is an ordered collection of root filesystem changes and
corresponding execution parameters for use within a container
runtime.

	Not a complete OS. No kerel ,kernel modules etc.

Image Layers

	image

	env

	apt

	ubuntu

	image1

	image2

	

	port

	other operation

	only diff is added in runtime container

	copy

	copy

	common till here

	apt

	apt

	

	Debian jessie

	Debain jessie

	

example of layers:

[image: imagelayers]

imagelayers

Image representation

<user>/<repo>:<tag>

DOCKERFILE

Dockerfile is a recipe for creating image.

	Command

	Description

	docker image build -f
some-dockerfile

	build image from a dockerfile

	docker image build -t
custom_nginx .

	build docker image with tag custom_nginx
from current working directory

	K
e
y
w
o
r
d

	Description

	F
R
O
M

	All dockerfile must have to minimal distribution. want to go
completely from scratch use “FROM scratch”

	E
N
V

	Setting up environment variables. inject main key/values for
image.

	R
U
N

	Run shell commads

	E
X
P
O
S
E

	Expose ports on docker virtual network still need to use -p / -P
on host os

	C
M
D

	Final command to be run every time container is launched/started

	C
O
P
Y

	Copy from local(host) os to docker(guest/virtual) os

	E
N
T
R
Y
P
O
I
N
T

	Entrypoint for a container at runtime

	W
O
R
K
D
I
R

	is prefered to using “RUN cd /some/path”

	V
O
L
U
M
E

	Create a new volume location and assign it to the directory in
the container will outlive the container when container is
updated. (requires manual deletion)

	A
D
D

	

It is adviced to keep least changing things in the
docker images to keep on top(initial steps) and more
variable things in later steps so that whenver any step changes or updates till that step cache will help to
speed up the process of building the image.

PRUNE

	Command

	Description

	docker image prune

	remove all dangling images

	docker system prune

	remove everything

Container lifetime and persistent data

	immutable (unchanging) and ephemeral (temporary/ disposable).

	“immutable infrastructure” : only re-deploy containers, never change.

	But if there is some data that has to be present (like database or
unique data).

	data can be preserved when container is getting updated with latest
version. docker gives us feature to ensure “separation of concerns”.

	This is called as “Presistent data”.

	2 solutions for this - Volumns and Bind Mounts.

	VOLUMES : make special location outside of container UFS(union file

system).

	BIND MOUNT : link container path to host path.

PERSISTENT DATA

	DATA VOLUMES

	Create a new volume location and assign it to the directory in the
container

	will outlive the container when container is updated.

	requires manual deletion

[image: volumeInfo]

volumeInfo

	Command

	Description

	docker volume ls

	list of volumes

	docker volume inspect volume_name

	information about volume

	docker volume create volumne_name

	create volume

[image: volumes1]

volumes1

docker container run -d --name mysql -e MYSQL_ALLOW_EMPTY_PASSWORD=True -v mysql-db:/var/lib/mysql mysql:latest

	if name is provided then it will register by name otherwise by
default a random name would be generated. (Named volumes)

	-v [name]:[path/to/volume]

[image: volumes2]

volumes2

	BIND MOUNTING

	Maps a host file or dir to container file or directory.

	basically two locations pointing to same file.

	Skips UFS, host files overwrite any in container.

	Cant use Dockerfile, has to be mentioned in docker container run
command.

	-v [/host/fs/path]:[/container/fs/path]

	Try

docker container run -it -d -p 3000:80 --name nginx -v /home/nishant/Desktop/Docker-Exploration/htmlexample:/usr/share/nginx/html nginx:latest

Docker Compose

	Configure relationships between containers.

	Save docker container run settings in easy-to-read file

	One liner developer env setup.

	
	YAML file - containers, networks, volumes, env.(default
docker-compose.yml/yaml)

	CLI tool - docker-compose

docker-compose CLI

	CLI tool is not a production grade tool but ideal for development and
test.

	Command

	Description

	docker-compose up

	setup volumes,networks and start all containers

	docker-compose up
-f file_name

	setup volumes,networks and start all containers
with a custom file_name

	docker-compose
down

	stop all containers and remove
containers/vols/nets

	docker-compose up
-d

	setup volumes,networks and start all containers
and detach

	docker-compose ps

	get services running

	docker-compose run

	

	docker-compose
stop

	

docker-compose versioning

There are three legacy versions of the Compose file format:

	Version 1. This is specified by omitting a version key at the root of
the YAML.

	Version 2.x. This is specified with a version: ‘2’ or version: ‘2.1’,
etc., entry at the root of the YAML.

	Version 3.x, designed to be cross-compatible between Compose and the
Docker Engine’s swarm mode. This is specified with a version: ‘3’ or
version: ‘3.1’, etc., entry at the root of the YAML.

Containers Everywhere

Some major tasks

	automate container lifecycle

	easily scale up/down/out/in

	container recreation upon failing

	replace container without downtime (blue/green deploy)

	control/track container started

	create cross-node virtual network

	only trusted servers run containers

	store secrets, keys, passwords and access them in right containers

Docker Swarm - container orchestration

[image: swarm5]

swarm5

	Swarm mode is a clustering solution built inside Docker

	docker swarm, docker node, docker service, docker stack, docker
secret

[image: swarm1] [image: swarm2] [image: swarm3] [image: swarm4]

docker swarm init

	PKI and security automation

	Root signing certificate created for swarm

	certificate is issued for first manager node

	join tokens are created

	RAFT database created to store root CA, configs and secrets

	no additional key value storage system

	replicates logs amongs managers.

	Command

	Description

	docker swarm init

	initialize

	docker node ls

	list down nodes

	docker service create

	creating a container service

	docker service ls

	list down services

	docker service ps service_name

	process information

	docker service update service_id
–replicas number

	update replicas

	docker service rm service_name

	remove service and delete all
containers one by one

[image: docker-service1]

docker-service1

	if a service is running and we stop one of its replicas by running
“docker container rm -f some_id/name” then it will show in the
results of “docker service ls” (one less replica) but within seconds
it will again start it and it will show in the result if “docker
service ps service_name” that one service was stopped.

[image: docker-service2]

docker-service2

PLAYGROUND

	https://labs.play-with-docker.com

	use above link to create instances and play with them

Steps

	get 3 instances

	in one instance run

docker swarm init --advertise-addr <public_ip>

	this will give a url like

docker swarm join --token <some token>

	run this command in other two instances to join them in this cluster

	now docker swarm commands cant be run in these worker nodes

	Run in the leader instance

docker node ls

[image: dokcer-swarm1]

dokcer-swarm1

	change the role of a node

[image: docker-swarm2]

docker-swarm2

	get the manager token to join anytime and add instance with
predefined manager role

[image: docker-swarm3]

docker-swarm3

	get the worker token to join anytime

[image: docker-swarm4]

docker-swarm4

	now create a service with 3 replicas

[image: docker-swarm5] [image: docker-swarm6]

Overlay Multi Host Networking

	choose –driver overlay when creating network

	for container to container traffic inside a Single Swarm

	Optional IPSec (AES) encryption on network creation

	Each service can connect to multiple networks

	Command

	Description

	docker network create –driver
overlay network_name

	create a overlay network

	[image: docker-network1]

	creating a network

	[image: docker-network3]

	creating two services on one
network

	[image: docker-network2]

	accessing them by their service
name (look at host)

Routing Mesh (Internal Load Balancer)

	Routes/distributes ingress (incoming) packets for a service to a
proper task

	spans all the nodes

	Uses IPVS from linux kernel (kernel primitives)

	Load balances swarm services across their tasks

	ways to work

	container to container overlay network (talking to virtual IP/VIP)

	external traffic incoming to publishing ports (all nodes listen)

	stateless load balancing

docker stack

Production Grade Compose

	New layer of abstraction to swarms called stacks

	accepts compose files

	docker stack deploy

 services task and container
 ^ ^
 || service1 -| node 1 | | | | |
 || -| node 2 | || Volumes ||
 ||-------------------- |
Stack ->|| service2 -| node 1 |
 || -| node 2 | | | |
 ||-------------------- | || Overlay Networks ||
 || service3 -| node 1 |
 || -| node 2 |

	Command

	Description

	docker stack deploy -c
compose_file app_name

	queue deploy services from a compose
file

	docker stack ls

	list all the apps in the stack

	docker stack ps app_name

	list down services in the app

	docker stack services
app_name

	gives important info about services
like replicas,mode etc.

docker secrets

	key value store in docker run time

	attach it to services only those can use it

	Command

	Description

	docker secret create
secret_name secret_file.txt

	put value in secret by a file

	echo “some_value” | docker
secret create secret_name -

	put value in secret by echoing

	docker secret ls

	list down secrets

	——–

	——–

	with service

	

	docker service create –name
service_name –secret
secret_name

	create a service with a secret
mentioned that can be used by
container

	docker service update
–secret-rm secret_name

	remove secret

Swarm App LifeCycle

Three important things in this trilogy is swarm, stack and secrets

$ docker-compose up #for development env
$ docker-compose up #for CI env
$ docker stack deploy #for production env

Kubernetes

	container orchestration

	runs on top of docker (usually)

	provides api/cli to manage containers across servers

sandbox

	https://labs.play-with-k8s.com/

	katacoda

Other flavours

	minikube

	MicroK8s

Cloud providers

	Azure Kubernetes Services (AKS)

	AWS (EKS)

	Google Cloud

Terminologies

	kubectl - cube control (cli)

	node - single server inside the cluster

	kubelet - Kubernetes agent running on nodes

In swarm in build docker swarm agent is available for workers to talk back to the master nodes kubernetes needs one explicitly

	control plane - set of containers that manages the clusters

	includes api server , scheduler, control manager, etcd and more

	sometimes called the master

 MASTER
|=======================|
| etcd |
| api |
| scheduler |
| controller manager |
| core dns |
| . |
| . |
| based on need |
| |
| Docker |
|=======================|

 NODE
|=======================|
| kubelet |
| kube-proxy |
| . |
| . |
| based on need |
| |
| |
| |
| Docker |
|=======================|

	pod - one or more containers running together on one Node

	basic unit of deployment, containers are always in pods

	controller - for creating /updating pods and other objects

	Deployment

	ReplicaSet

	StatefulSet

	DaemonSet

	Job

	CronJob

	service - network endpoint to connect to a pod

	namespace - filter group

	secrets, ConfigMaps …

in play with k8s

	I created 3 instances

	I am going to make node1 as master/ manager node

	Rest of the nodes will be worker nodes

	Main goal is to create deplotyments

	Snaps

	Description

	kubectl get nodes

	get nodes connected to
the cluster

	[image: kube1]

	starting master node
(command already
provided with k8s
playground)

	[image: kube2]

	getting version (one
client and one server)

	kubectl run my_nginx –image nginx [image: kube3]

	run a pod

	kubectl get pods [image: kube4]

	get pods

	kubectl create deployment my-nginx –image
nginx [image: kube6] [image: kube7]

	create deployment

	[image: kube5]

	get all contents

	kubectl delete deployment my-nginx

	delete the deployment

Pods --> ReplicaSet --> Deployment

[image: kube6]

kube6

Scaling ReplicaSets

[image: kube9] [image: kube10]

	Snaps

	Description

	[image: kube11]

	logs

	[image: kube12]

	logs follow changes and tail last 1 line logs

	[image: kube13]

	describe pod/deployments etc

	[image: kube14]

	watch

Service Types

	kubectl expose creates a service for exisiting pods

	Service is a stable address for pod

	it we want to connect to pod, we need a service

	CoreDNS allows us to resolve services by name

	Types of services :

	ClusterIP

	NodePort

	LoadBalancer

	ExternalName

ClusterIP (default)

	Single, Internal Virtual IP allocation

	Reachable within the cluster

	pods can reach service on port number

NodePort

	High port on each node

	Outside the cluster

	port is open for every node’s IP

	Anyone can reach node can connect

LoadBalancer

	Controls a Load Balancer external to the cluster

	Only available when infrastructure providers gives it (AWS ELB etc)

	Create NodePort+ClusterIP, connect LB to NodePort to send

ExternalName

	Add CNAME DNS record to CoreDNS only

	Not used for pods , but for giving pods a DNS name that can be used
outside Kubernetes cluster.

	Snaps

	Description

	[image: kube15]

	create service expose port with cluster IP

	[image: kube16]

	create service NodePort. different than docker as
left port if internal port and right one is node
port for outside cluster

	[image: kube17]

	create service with LoadBalancer

	[image: kube18]

	namespaces

Kubernetes Management Techniques

Generators (Automation behind commands)

	Helper templates

	Every resource in kubernetes has a ‘spec’ or specification

> kubectl create deployment smaple --iamge nginx --dry-run -o yaml

	output those templates --dry-run -o yaml

	these yaml defaults can be a starting points to create new ones

	Snaps

	Description

	[image: kube19]

	Get Generator info for deployemnt

	[image: kube20]

	Get Generator info for job

	[image: kube21]

	Get Generator info for expose

	Imperative

	Decalarative

	how program operates

	what a program should accomplish

	ex.- making your own coffee

	ex.- give instructions to a barista

	not easy to automate

	automation is good

	know every step

	dont know current state, only final
result is known

	
	

	requires to know all yaml keys

Management approaches

	Imperative commands

	create, expose, edit, scale etc

	Imperative objects

	create -f file.yml , replace -f file.yml

	Declarative objects

	apply -f file.yml

Kubernetes Configuration YAML

	Each file contains one or more configuration files

	Each manifest describes an API object (deployment, job, secret)

	Each mainfest needs these four parts-

	apiVersion:

	kind:

	metadata:

	spec:

	kubectl apply -f <directory>/

	selectors is used for patternmatching for different services

	info

	Snaps

	Description

	cluster

	[image: kube22]

	cluster info

	kind

	[image: kube23]

	api resources (kind will
give info for yaml file)

	apiVersion

	[image: kube24]

	api versions

	metadata

	
	

	only name of the
service is required

	spec

	
	

	all the action

	explain services
recursively

	[image: kube25]

	explain services get
keywords

	explain services
description

	[image: kube26]

	explain services get
keywords

	explain deployments
description

	[image: kube27]

	explain services get
keywords

	https://kubernetes.io/docs/reference/#api-reference

	Snaps

	Description

	[image: kube28]

	find the difference between running service and updated yml

Labels and Annotations

	labels under metadata

	for grouping, filtering etc.

	examples - tier: frontend, app: api, env: prod etc.(There are no
specific standards to do so, it depends on the team you are working
in)

	no meant to hold complex or large information, instead of label
use annotaions.

	filter on label used in a get

	kubectl get pods -l app=nginx

	apply commands only for matching labels

	kubectl apply -f some_file.yaml -l app=nginx

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 selector:
 matchLabels:
 app: nginx
 minReadySeconds: 5
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.14.2
 ports:
 - containerPort: 80

Label Selectors

	Indicators to services and deployments, which pods are theirs to pick
up.

in above example the resources are going to match labels from selectors
to classify nodes and apply things.

Storage in K8s

Initial idea behind containers to be immutable, distributed and replaceable (in hindsight statefulness came later on as feature to have something stored to be used if container instance changes like database)

	we can create VOLUME similar to docker swarm

	2 types

	Volumes

	Tied to lifecycle of a pod

	All containers in a pod can share them

	Persistent Volumes

	Created at cluster level, outlives a Pod

	Sep storage config from pod

	multiple pods can share them

	CSI (Container Storage Interface) plugins from different vendors
to connect to storage to have uniformity.

Ingress Controller

	Lets talk about http

	How do we route outside connections based on hostname or url?

	ingress controller is the way to do it.

	Ingress controller is the way to differenciate different
routes(considering all of them are using 80 or 443) hosted in a
cluster.

	It is not inherently installed in k8s.

	Nginx is a populer one, but other examples are Taefik, HAProxy, etc.

	Implemention is specific to controller chosen.

Custom resources

Reference [https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/]

Simply just additional API extensions that are not default in k8s but
they can be part of k8s functionality once added.

Higher Deployment Abstractions

	We have yaml files/ configurations, but how to use them for
deployment.

	Helm is the most populer one to do so. Helm is to k8s, what k8s
is to containers. yaml templates.

	Compose on k8s comes with docker desktop. Instead of going to
docker stack it will ask for k8s deployment (need to try this out).

	most distros support Helm.

New things CNAB and docker app

Namespaces

user@user~/$ kubectl get namespaces
user@user~/$ kubectl get all --all-namespaces
user@user~/$ kubectl config get-contexts

Docker Security

Reference [https://github.com/BretFisher/ama/issues/17]

https://docs.docker.com/engine/security/

https://sysdig.com/blog/20-docker-security-tools/

Docker Bench Sceurity

https://github.com/docker/docker-bench-security

in a bunch of docker official images available online, there are
users created groupadd & useradd. Our job while using those
images is use the user mentioned and not run the image with root
previleges.

WORKDIR /app
USER <user_name>

Additional Docs

	Machine Learning Exploration [https://machinelearningexploration.readthedocs.io]

	Neural Network Doc [https://understandnn.readthedocs.io]

	NLP Doc [https://nlpblog.readthedocs.io]

	mightypy [https://mightypy.readthedocs.io/]

	graphpkg [https://graphpkg.readthedocs.io/]

Indices and tables

	Index

	Module Index

	Search Page

Index

Docker-Exploration

Docker used for documentation : Docker CE (Community Edition)

[image: logo]

logo

[image: concept1]
concept1

	go to https://get.docker.com/

	take the script

	install it- easy-peasy

	curl -sSL https://get.docker.com/ | sh

Some Basic Docker Commands

	Command

	Description

	docker version

	Get the version information of docker.

	docker info

	Get info.

	docker images

	Get all available images in local repo.

	docker container ps /
docker container ps -a

	get running containers (-a all stopped &
running)

	docker container run -p
80:80 -d –name
test_container nginx

	Run a container with nginx at port 80.
bridge host IP 80 and container IP 80.

	docker container run –rm
-it image_name

	run container and automatically remove
upon close

	docker container logs
test_container

	get logs for mentioned container

	docker container top
test_container

	Get process/daemons running in the
container

	docker container rm …

	Remove stopped container. Containers to
be removed should be stopped.

	docker container rm -f

	Remove forcefully.

	docker container inspect
test_container

	details of container config

	docker container stats

	show stats mem usage, cpu usage etc.

	docker container run -it
–name test_name
image_name bash

	run container (-i –> interactive,-t –>
pseudo tty/ssh) and opens bash(changed
default commands)

	docker container start
-ai container_name

	starts existing (-ai start with given
starting command) container

	docker container stop
container_name

	stops existing container

	docker container exec
-it container_name bash

	open bash in already running container

	docker history
image_name:tag

	layer information of the image

Port

-p 8080:8080

[host_os_port : docker_container_port]

What happens behind docker run

[image: Image]

Image

Points to Notice

	containers aren’t mini VM’s, they are just processes(binary files)
running on HOST Operating Systems.

	Limited to what resource they can access.

	Exit when process is stopped

[image: concept2]

concept2

Examples

nginx

	docker pull nginx:latest

	docker run -p 80:80 –name nginx -d nginx:latest

	curl localhost

mongo

	docker pull mongo:latest

	docker run -p 27017:27017 –name mongo -d mongo:latest

	mongo –host localhost –port 27017

mysql

	docker pull mysql:latest

	docker run -p 3306:3306 –name mysql -e MYSQL_RANDOM_ROOT_PASSWORD=yes
-d mysql:latest

	get first random password from docker container logs mysql (GENERATED
ROOT PASSWORD)

	mysql -uroot -p[password from previous step] -h127.0.0.1 -P3306

or

	docker run -p 3306:3306 –name mysql -e
MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:latest

	mysql -uroot -p my-secret-pw -h127.0.0.1 -P3306

Docker Networks

[image: concept3]

concept3

	Command

	Description

	docker container port
container_name

	get port info

	docker container inspect
–format “{{
.NetworkSettings.IPAddress
}}” container_name

	get IP

	docker network ls

	show networks

	docker network inspect
net_name

	inspect a network

	docker network create
–driver

	create a network

	docker network connect
net_id container_id

	attach

	docker network disconnect
net_id container_id

	detach

	docker container run –name
c_name –network net_name
image_name

	specifying network name in container
while starting

	docker container run –name
c_name –net net_name
–net-alias alias_name
image_name

	specifying network name and alias in
container while starting (same alias
containers can be called with same DNS
name)

DNS Naming (inter container communication)

	containers cant rely on IP’s for inter-communication.

	bridge (default) doesnt have this option.

	one container can communicate with another in same network with
container name(instead of IP).

	it is easier in docker compose.

try this

	docker pull nginx:latest

	docker network create custom_network

	docker network ls

	docker run -it -d -p 8081:80 –network custom_network –name nginx2
nginx:latest

	docker run -it -d -p 8080:80 –network custom_network –name nginx1
nginx:latest

	docker container ls

	docker container exec -it nginx1 curl http://nginx2

IMAGE

	app binaries and dependencies

	metadata about image data or how to run the image

	An image is an ordered collection of root filesystem changes and
corresponding execution parameters for use within a container
runtime.

	Not a complete OS. No kerel ,kernel modules etc.

Image Layers

	image

	env

	apt

	ubuntu

	image1

	image2

	

	port

	other operation

	only diff is added in runtime container

	copy

	copy

	common till here

	apt

	apt

	

	Debian jessie

	Debain jessie

	

example of layers:

[image: imagelayers]

imagelayers

Image representation

<user>/<repo>:<tag>

DOCKERFILE

Dockerfile is a recipe for creating image.

	Command

	Description

	docker image build -f
some-dockerfile

	build image from a dockerfile

	docker image build -t
custom_nginx .

	build docker image with tag custom_nginx
from current working directory

	K
e
y
w
o
r
d

	Description

	F
R
O
M

	All dockerfile must have to minimal distribution. want to go
completely from scratch use “FROM scratch”

	E
N
V

	Setting up environment variables. inject main key/values for
image.

	R
U
N

	Run shell commads

	E
X
P
O
S
E

	Expose ports on docker virtual network still need to use -p / -P
on host os

	C
M
D

	Final command to be run every time container is launched/started

	C
O
P
Y

	Copy from local(host) os to docker(guest/virtual) os

	E
N
T
R
Y
P
O
I
N
T

	Entrypoint for a container at runtime

	W
O
R
K
D
I
R

	is prefered to using “RUN cd /some/path”

	V
O
L
U
M
E

	Create a new volume location and assign it to the directory in
the container will outlive the container when container is
updated. (requires manual deletion)

	A
D
D

	

It is adviced to keep least changing things in the
docker images to keep on top(initial steps) and more
variable things in later steps so that whenver any step changes or updates till that step cache will help to
speed up the process of building the image.

PRUNE

	Command

	Description

	docker image prune

	remove all dangling images

	docker system prune

	remove everything

Container lifetime and persistent data

	immutable (unchanging) and ephemeral (temporary/ disposable).

	“immutable infrastructure” : only re-deploy containers, never change.

	But if there is some data that has to be present (like database or
unique data).

	data can be preserved when container is getting updated with latest
version. docker gives us feature to ensure “separation of concerns”.

	This is called as “Presistent data”.

	2 solutions for this - Volumns and Bind Mounts.

	VOLUMES : make special location outside of container UFS(union file

system).

	BIND MOUNT : link container path to host path.

PERSISTENT DATA

	DATA VOLUMES

	Create a new volume location and assign it to the directory in the
container

	will outlive the container when container is updated.

	requires manual deletion

[image: volumeInfo]

volumeInfo

	Command

	Description

	docker volume ls

	list of volumes

	docker volume inspect volume_name

	information about volume

	docker volume create volumne_name

	create volume

[image: volumes1]

volumes1

docker container run -d --name mysql -e MYSQL_ALLOW_EMPTY_PASSWORD=True -v mysql-db:/var/lib/mysql mysql:latest

	if name is provided then it will register by name otherwise by
default a random name would be generated. (Named volumes)

	-v [name]:[path/to/volume]

[image: volumes2]

volumes2

	BIND MOUNTING

	Maps a host file or dir to container file or directory.

	basically two locations pointing to same file.

	Skips UFS, host files overwrite any in container.

	Cant use Dockerfile, has to be mentioned in docker container run
command.

	-v [/host/fs/path]:[/container/fs/path]

	Try

docker container run -it -d -p 3000:80 --name nginx -v /home/nishant/Desktop/Docker-Exploration/htmlexample:/usr/share/nginx/html nginx:latest

Docker Compose

	Configure relationships between containers.

	Save docker container run settings in easy-to-read file

	One liner developer env setup.

	
	YAML file - containers, networks, volumes, env.(default
docker-compose.yml/yaml)

	CLI tool - docker-compose

docker-compose CLI

	CLI tool is not a production grade tool but ideal for development and
test.

	Command

	Description

	docker-compose up

	setup volumes,networks and start all containers

	docker-compose up
-f file_name

	setup volumes,networks and start all containers
with a custom file_name

	docker-compose
down

	stop all containers and remove
containers/vols/nets

	docker-compose up
-d

	setup volumes,networks and start all containers
and detach

	docker-compose ps

	get services running

	docker-compose run

	

	docker-compose
stop

	

docker-compose versioning

There are three legacy versions of the Compose file format:

	Version 1. This is specified by omitting a version key at the root of
the YAML.

	Version 2.x. This is specified with a version: ‘2’ or version: ‘2.1’,
etc., entry at the root of the YAML.

	Version 3.x, designed to be cross-compatible between Compose and the
Docker Engine’s swarm mode. This is specified with a version: ‘3’ or
version: ‘3.1’, etc., entry at the root of the YAML.

Containers Everywhere

Some major tasks

	automate container lifecycle

	easily scale up/down/out/in

	container recreation upon failing

	replace container without downtime (blue/green deploy)

	control/track container started

	create cross-node virtual network

	only trusted servers run containers

	store secrets, keys, passwords and access them in right containers

Docker Swarm - container orchestration

[image: swarm5]

swarm5

	Swarm mode is a clustering solution built inside Docker

	docker swarm, docker node, docker service, docker stack, docker
secret

[image: swarm1] [image: swarm2] [image: swarm3] [image: swarm4]

docker swarm init

	PKI and security automation

	Root signing certificate created for swarm

	certificate is issued for first manager node

	join tokens are created

	RAFT database created to store root CA, configs and secrets

	no additional key value storage system

	replicates logs amongs managers.

	Command

	Description

	docker swarm init

	initialize

	docker node ls

	list down nodes

	docker service create

	creating a container service

	docker service ls

	list down services

	docker service ps service_name

	process information

	docker service update service_id
–replicas number

	update replicas

	docker service rm service_name

	remove service and delete all
containers one by one

[image: docker-service1]

docker-service1

	if a service is running and we stop one of its replicas by running
“docker container rm -f some_id/name” then it will show in the
results of “docker service ls” (one less replica) but within seconds
it will again start it and it will show in the result if “docker
service ps service_name” that one service was stopped.

[image: docker-service2]

docker-service2

PLAYGROUND

	https://labs.play-with-docker.com

	use above link to create instances and play with them

Steps

	get 3 instances

	in one instance run

docker swarm init --advertise-addr <public_ip>

	this will give a url like

docker swarm join --token <some token>

	run this command in other two instances to join them in this cluster

	now docker swarm commands cant be run in these worker nodes

	Run in the leader instance

docker node ls

[image: dokcer-swarm1]

dokcer-swarm1

	change the role of a node

[image: docker-swarm2]

docker-swarm2

	get the manager token to join anytime and add instance with
predefined manager role

[image: docker-swarm3]

docker-swarm3

	get the worker token to join anytime

[image: docker-swarm4]

docker-swarm4

	now create a service with 3 replicas

[image: docker-swarm5] [image: docker-swarm6]

Overlay Multi Host Networking

	choose –driver overlay when creating network

	for container to container traffic inside a Single Swarm

	Optional IPSec (AES) encryption on network creation

	Each service can connect to multiple networks

	Command

	Description

	docker network create –driver
overlay network_name

	create a overlay network

	[image: docker-network1]

	creating a network

	[image: docker-network3]

	creating two services on one
network

	[image: docker-network2]

	accessing them by their service
name (look at host)

Routing Mesh (Internal Load Balancer)

	Routes/distributes ingress (incoming) packets for a service to a
proper task

	spans all the nodes

	Uses IPVS from linux kernel (kernel primitives)

	Load balances swarm services across their tasks

	ways to work

	container to container overlay network (talking to virtual IP/VIP)

	external traffic incoming to publishing ports (all nodes listen)

	stateless load balancing

docker stack

Production Grade Compose

	New layer of abstraction to swarms called stacks

	accepts compose files

	docker stack deploy

 services task and container
 ^ ^
 || service1 -| node 1 | | | | |
 || -| node 2 | || Volumes ||
 ||-------------------- |
Stack ->|| service2 -| node 1 |
 || -| node 2 | | | |
 ||-------------------- | || Overlay Networks ||
 || service3 -| node 1 |
 || -| node 2 |

	Command

	Description

	docker stack deploy -c
compose_file app_name

	queue deploy services from a compose
file

	docker stack ls

	list all the apps in the stack

	docker stack ps app_name

	list down services in the app

	docker stack services
app_name

	gives important info about services
like replicas,mode etc.

docker secrets

	key value store in docker run time

	attach it to services only those can use it

	Command

	Description

	docker secret create
secret_name secret_file.txt

	put value in secret by a file

	echo “some_value” | docker
secret create secret_name -

	put value in secret by echoing

	docker secret ls

	list down secrets

	——–

	——–

	with service

	

	docker service create –name
service_name –secret
secret_name

	create a service with a secret
mentioned that can be used by
container

	docker service update
–secret-rm secret_name

	remove secret

Swarm App LifeCycle

Three important things in this trilogy is swarm, stack and secrets

$ docker-compose up #for development env
$ docker-compose up #for CI env
$ docker stack deploy #for production env

Kubernetes

	container orchestration

	runs on top of docker (usually)

	provides api/cli to manage containers across servers

sandbox

	https://labs.play-with-k8s.com/

	katacoda

Other flavours

	minikube

	MicroK8s

Cloud providers

	Azure Kubernetes Services (AKS)

	AWS (EKS)

	Google Cloud

Terminologies

	kubectl - cube control (cli)

	node - single server inside the cluster

	kubelet - Kubernetes agent running on nodes

In swarm in build docker swarm agent is available for workers to talk back to the master nodes kubernetes needs one explicitly

	control plane - set of containers that manages the clusters

	includes api server , scheduler, control manager, etcd and more

	sometimes called the master

 MASTER
|=======================|
| etcd |
| api |
| scheduler |
| controller manager |
| core dns |
| . |
| . |
| based on need |
| |
| Docker |
|=======================|

 NODE
|=======================|
| kubelet |
| kube-proxy |
| . |
| . |
| based on need |
| |
| |
| |
| Docker |
|=======================|

	pod - one or more containers running together on one Node

	basic unit of deployment, containers are always in pods

	controller - for creating /updating pods and other objects

	Deployment

	ReplicaSet

	StatefulSet

	DaemonSet

	Job

	CronJob

	service - network endpoint to connect to a pod

	namespace - filter group

	secrets, ConfigMaps …

in play with k8s

	I created 3 instances

	I am going to make node1 as master/ manager node

	Rest of the nodes will be worker nodes

	Main goal is to create deplotyments

	Snaps

	Description

	kubectl get nodes

	get nodes connected to
the cluster

	[image: kube1]

	starting master node
(command already
provided with k8s
playground)

	[image: kube2]

	getting version (one
client and one server)

	kubectl run my_nginx –image nginx [image: kube3]

	run a pod

	kubectl get pods [image: kube4]

	get pods

	kubectl create deployment my-nginx –image
nginx [image: kube6] [image: kube7]

	create deployment

	[image: kube5]

	get all contents

	kubectl delete deployment my-nginx

	delete the deployment

Pods --> ReplicaSet --> Deployment

[image: kube6]

kube6

Scaling ReplicaSets

[image: kube9] [image: kube10]

	Snaps

	Description

	[image: kube11]

	logs

	[image: kube12]

	logs follow changes and tail last 1 line logs

	[image: kube13]

	describe pod/deployments etc

	[image: kube14]

	watch

Service Types

	kubectl expose creates a service for exisiting pods

	Service is a stable address for pod

	it we want to connect to pod, we need a service

	CoreDNS allows us to resolve services by name

	Types of services :

	ClusterIP

	NodePort

	LoadBalancer

	ExternalName

ClusterIP (default)

	Single, Internal Virtual IP allocation

	Reachable within the cluster

	pods can reach service on port number

NodePort

	High port on each node

	Outside the cluster

	port is open for every node’s IP

	Anyone can reach node can connect

LoadBalancer

	Controls a Load Balancer external to the cluster

	Only available when infrastructure providers gives it (AWS ELB etc)

	Create NodePort+ClusterIP, connect LB to NodePort to send

ExternalName

	Add CNAME DNS record to CoreDNS only

	Not used for pods , but for giving pods a DNS name that can be used
outside Kubernetes cluster.

	Snaps

	Description

	[image: kube15]

	create service expose port with cluster IP

	[image: kube16]

	create service NodePort. different than docker as
left port if internal port and right one is node
port for outside cluster

	[image: kube17]

	create service with LoadBalancer

	[image: kube18]

	namespaces

Kubernetes Management Techniques

Generators (Automation behind commands)

	Helper templates

	Every resource in kubernetes has a ‘spec’ or specification

> kubectl create deployment smaple --iamge nginx --dry-run -o yaml

	output those templates --dry-run -o yaml

	these yaml defaults can be a starting points to create new ones

	Snaps

	Description

	[image: kube19]

	Get Generator info for deployemnt

	[image: kube20]

	Get Generator info for job

	[image: kube21]

	Get Generator info for expose

	Imperative

	Decalarative

	how program operates

	what a program should accomplish

	ex.- making your own coffee

	ex.- give instructions to a barista

	not easy to automate

	automation is good

	know every step

	dont know current state, only final
result is known

	
	

	requires to know all yaml keys

Management approaches

	Imperative commands

	create, expose, edit, scale etc

	Imperative objects

	create -f file.yml , replace -f file.yml

	Declarative objects

	apply -f file.yml

Kubernetes Configuration YAML

	Each file contains one or more configuration files

	Each manifest describes an API object (deployment, job, secret)

	Each mainfest needs these four parts-

	apiVersion:

	kind:

	metadata:

	spec:

	kubectl apply -f <directory>/

	selectors is used for patternmatching for different services

	info

	Snaps

	Description

	cluster

	[image: kube22]

	cluster info

	kind

	[image: kube23]

	api resources (kind will
give info for yaml file)

	apiVersion

	[image: kube24]

	api versions

	metadata

	
	

	only name of the
service is required

	spec

	
	

	all the action

	explain services
recursively

	[image: kube25]

	explain services get
keywords

	explain services
description

	[image: kube26]

	explain services get
keywords

	explain deployments
description

	[image: kube27]

	explain services get
keywords

	https://kubernetes.io/docs/reference/#api-reference

	Snaps

	Description

	[image: kube28]

	find the difference between running service and updated yml

Labels and Annotations

	labels under metadata

	for grouping, filtering etc.

	examples - tier: frontend, app: api, env: prod etc.(There are no
specific standards to do so, it depends on the team you are working
in)

	no meant to hold complex or large information, instead of label
use annotaions.

	filter on label used in a get

	kubectl get pods -l app=nginx

	apply commands only for matching labels

	kubectl apply -f some_file.yaml -l app=nginx

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 selector:
 matchLabels:
 app: nginx
 minReadySeconds: 5
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.14.2
 ports:
 - containerPort: 80

Label Selectors

	Indicators to services and deployments, which pods are theirs to pick
up.

in above example the resources are going to match labels from selectors
to classify nodes and apply things.

Storage in K8s

Initial idea behind containers to be immutable, distributed and replaceable (in hindsight statefulness came later on as feature to have something stored to be used if container instance changes like database)

	we can create VOLUME similar to docker swarm

	2 types

	Volumes

	Tied to lifecycle of a pod

	All containers in a pod can share them

	Persistent Volumes

	Created at cluster level, outlives a Pod

	Sep storage config from pod

	multiple pods can share them

	CSI (Container Storage Interface) plugins from different vendors
to connect to storage to have uniformity.

Ingress Controller

	Lets talk about http

	How do we route outside connections based on hostname or url?

	ingress controller is the way to do it.

	Ingress controller is the way to differenciate different
routes(considering all of them are using 80 or 443) hosted in a
cluster.

	It is not inherently installed in k8s.

	Nginx is a populer one, but other examples are Taefik, HAProxy, etc.

	Implemention is specific to controller chosen.

Custom resources

Reference [https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/]

Simply just additional API extensions that are not default in k8s but
they can be part of k8s functionality once added.

Higher Deployment Abstractions

	We have yaml files/ configurations, but how to use them for
deployment.

	Helm is the most populer one to do so. Helm is to k8s, what k8s
is to containers. yaml templates.

	Compose on k8s comes with docker desktop. Instead of going to
docker stack it will ask for k8s deployment (need to try this out).

	most distros support Helm.

New things CNAB and docker app

Namespaces

user@user~/$ kubectl get namespaces
user@user~/$ kubectl get all --all-namespaces
user@user~/$ kubectl config get-contexts

Docker Security

Reference [https://github.com/BretFisher/ama/issues/17]

https://docs.docker.com/engine/security/

https://sysdig.com/blog/20-docker-security-tools/

Docker Bench Sceurity

https://github.com/docker/docker-bench-security

in a bunch of docker official images available online, there are
users created groupadd & useradd. Our job while using those
images is use the user mentioned and not run the image with root
previleges.

WORKDIR /app
USER <user_name>

 _images/swarm5.png

_images/volumeInfo.png
1,

"Image": "mysql:latest",

"Volumes": {
"/var/lib/mysql”: {}

1,
"NorkingDir":
"Entrypoint

_images/swarm3.png
service

available node

_images/swarm4.png
. docker service create

Manager Node

Worker Node

Dispatcher

Accepts command from client and creates service object

Orchestrator | Reconciliation loop for service objects and creates tasks

Allocates IP addresses to tasks
Assigns nodes to tasks

O checks in on workers

Connects to dispatcher to check on assigned tasks

Executes the tasks assigned to worker node #

_images/dockerSwarm4.png
» docker swarm join-token worker
fo add a worker to this swarm, run the following comman

docker swarm join
2:2377

token SWMTKN-1-645q8h8pvSnlgscTslinG:

_images/dockerSwarm5.png
v docker service create --replicas 3 alpine ping £.8.8.%
6sp2ubozcazgutakstatotors

overall progress: 3 out of 3 tasks

1/3: running

2/3: running
3/3: running [
verity: Service converged
[node3] (local) rootgls2.168.0.8 ~

o docker service 1s

o NAME MoDE REPLICAS IMAGE PORTS

csp2ubozcazg distracted_elgamal replicated 3/3 alpine:latest

[node3] (local) rootgls2.168.0.8 ~

s docker node ps

o NAME nce oDE DESIRED STATE CURRENT STATE ERROR
b7ncdosgyl7e distracted elgamal.l alpine:latest node3 Running Running 30 seconds ago

[node3] (local) root@192.168.0.8 ~

s docker node ps node2

1o NAME AGE NoDE DESIRED STATE CURRENT STATE ERROR
btqnuzily2zi distracted_elgamal.2 alpine:latest node2 Running Running 33 seconds ago

(node3] (local) root@l?2.168.0.8 ~

20RTS

PORTS

_images/dockerSwarm2.png
[node3] (local) root@ls’2.168.0.8 -
 docker node update --role manager node2
ode2

node3] (local) root@ls2.168.0.
- docker node 1s

D HOSTNAME STATUS
add7y8c3suxdendxsvno2tyd nodel Ready
qsveuullzim3sbpiwylfplp2 nodez Ready

osalayqOen6lxtvyqze25120 * node3 Ready

AVAILABILITY
Active
Active
Active

MANAGER STATUS

Reachable
Leader

ENGINE VERSION
20.10.0
20.10.0
20.10.0

_images/volumes1.png
oot@nishant:/home/nishant/Desktop/Docker-Exploration# docker volume s
RIVER VOLUME NAME

Local 5b8b40F1bfescdb202fbalde723056ba2272b76242ceaf 57984446726 e765¢
ocal 50ebc6385a2bb518eash87f7f5d467F316Fbob764e2a90411F424b2cd65Fall
ocal 107d64e32a62d6460a3F721a1ed00a2 f1b72319576ebba50f06e0921dcFb1ag
ocal ab8a7bfcs60ffadb11fd2f7e317c33e6ef 5b74bd1569baalcbofcfabcds18dd3
ocal €8156781476081ad271bae8a69b137bccca20114fe97a26373b075635a07bdbF

local d56288d7fc2f926a37f4d92940dbd5dbe9dad1322c3420f858ce916bIebf6F5

_images/dockerSwarm3.png
docker swarm join-token manager
© add a manager to this swarm, run the following command:

docker swarm join --token SWMTKN-1-64sq8hepvSnlgsc7slinér
8:2377

_images/volumes2.png
root@nishant:/home/nishant/Desktop/Docker-Exploration# docker container run -d --name mysql -e MYSQL_ALLOW_EMPTY_PASSWORI
ost

FFb6dcas26578e166e0e9c9038a2b9a5c39deebs6b2367dS6f0ad9f624880794

root@nishant:/home/nishant/Desktop/Docker-Exploration# docker volume s

DRIVER VOLUME NAME
local nysql-db

rue -v mysql-db:

var/lib/mysql mysql:

_images/imageProcessing1.png

_images/imagelayers.png
oot@nishant: /home/nishant#

MAGE
11dcfe21esfd
missing>
missing>
missing>
missing>
missing>
missing>
missing>
missing>
missing>
missing>
missing>
missing>
missing>

CREATED
weeks.
weeks.
weeks.
weeks.
weeks.
weeks.
weeks.
weeks.
weeks.
weeks.
weeks.
weeks.
weeks.
weeks

docker history python:3.8-slim-buster

ago
ago
ago
ago
ago
ago
ago
ago
ago
ago
ago
ago
ago
ago

CREATED
/bin/sh
/bin/sh
/bin/sh
/bin/sh
/bin/sh
/bin/sh
/bin/sh
/bin/sh
/bin/sh
/bin/sh
/bin/sh
/bin/sh
/bin/sh
/bin/sh

BY
-c
-c
-c
-c
-c
-c
-c
-c
-c
-c
-c
-c
-c
c

#(nop) CMD ["python3”

set -ex; savedAptMark="$(apt-ma..
#(nop) ENV PYTHON_GET_PIP_SHA256.
t.
#(nop) ENV PYTHON_PIP_VERSION=26.
cd /usr/local/bin “&& 1n -s idle.
$(apt-..

#(nop) ENV PYTHON_GET_PIP_URI

set -ex 8& savedAptMarl
#(nop) ENV PYTHON_VERSION=3.8.6

#(nop) ENV GPG_KEY=E3FF2839C048B..
apt-get update 8& apt-get install.

#(nop) ENV LAN
#(nop) ENV PATI
#(nop) CMD ["bash"]
#(nop) ADD file

LUTF-8

usr/local/bin: /..

dc53e7886c35bc21..

SIZE
o8
8.421B
o8

o8

o8
328
28.41B
o8

o8
7.0318
o8

o8

08
69.2MB

_images/dockerSwarm6.png
[¢ docker service 1s

i NAME MODE REPLICAS IMAGE PORTS

6sp2wbozca2g distracted_elgamal replicated 3/3 alpine:latest

[node3] (local) root@l92.168.0.8 -

s docker service ps distracted_elgamal

1o NAME MAGE NoDE DESIRED STATE CURRENT STATE ERROR
Th6dodgyl7e distracted_elgamal.l alpine:latest node3 Running Running 3 minutes ago
stanuzily2z: distracted_elgamal.2 node2 Running Running 3 minutes ago
zus2b7zyygto distracted elgamal.3 alpine:latest nodel Running Running 3 minutes ago

PORTS

_static/file.png

_images/dockerVsVM.png
BINS/
LiBS.

BINS/ BINS/
uBs Lies

VIRTUAL MACHINE ARCHITECTURE

CONTAINER 1 CONTAINER 2

Docker Engine

DOCKER ARCHITECTURE

_static/minus.png

_images/kube1.png
[nodel ~]3 kubeadm init --apiserver-advertise-address $(hostname -i)
[initiatizing machine T0 from randon generator.

[init] Using Kubernetes version: v1.20.4

[preflight] Running pre-flight checks
[WARNING Service-Docker]: docker service is not active, please run 'systenctl st
[WARNING IsDockerSystemdCheck]: detected "cgroupfs® as the Docker cgroup driver. |

pod-network-cidr 1(

_images/kube10.png
(nodel ~]% kubectl scale deploy/my-apache --replicas 2
ieploynent .apps /ny-apache scaled

(nodel -|3 kubectl scals deployment my-apache -—-replicas I
ieploynent .apps /ny-apache scaled

fnodel |3 kubectl get all

R READY STATUS RESTARTS AGE
cod/my-apache-To6BEAdB4SkSpnk 0/1 Pending O amaze
od/my-apache-To68EAds4snTsgf /1 Pending O a6s
od/my-apache-To68Edds¢s-wirsz /1 Pending O 262

e Tr0E CLUSTER-TP EXTERNAL-TP PORT(S)
sorvice/rubsrnstes Clusterl? 10.96.0.1 <none> a83/7cp
e READY UP-TO-DATE AVAILABLE AGE
ieploynent .apps /my-apache 0/3 3 o an22s
e DESIRED CURRENT ~READY AGE

-eplicaset.apps/my-apache-Th68EddE49 B o s

ace
a6m

25

_images/dockerService1.png
root@nishant: /home/nishant/Desktop/Docker-Exploration# docker service create alpine ping 8.8.8.8
inage alpine:latest could not be accessed on a registry to record

Lts digest. Each node will access alpine:latest independently,

ossibly leading to different nodes running different

versions of the image.

25182251 fUOSUtNG6b319h6

verall progress: 1 out of 1 tasks

1/1: running

verify: Service converged

root@nishant: /home/nishant/Desktop/Docker-Exploration# docker service ls

ID NAME MODE REPLICAS IMAGE

b25f18225r fu cranky_wilbur replicated 1/1 alpine:latest

oot@nishant: /home/nishant/Desktop/Docker-Exploration# docker service ps cranky_wilbur

ID NAME IMAGE NODE DESIRED STATE
PORTS

WeCX638nXT7s cranky_wilbur.1 alpine:latest nishant Running

dmolk7ftqmy _ cranky_wilbur.1 alpine:latest nishant shutdown

ge: alpine:latest”

yFazzTwjuzit _ cranky_wilbur.1 alpine:latest nishant shutdown

je: alpine:latest”
root@nishant:/home/nishant/Desktop/Docker -Exploration# docker container ls

CONTAINER 1D IMAGE COMMAND CREATED STATUS
11324831172 alpine:latest "ping 8.8.8.8" 2 minutes ago Up 2 minutes
1x755b jmabassddbs

PORTS.
CURRENT STATE ERROR
Running about a minute ago
Rejected about a minute ago "No such ima
Rejected about a minute ago "No such ima

PORTS.

root@nishant: /home/nishant/Desktop/Docker-Exploration# docker service update 9zsf182zsrfu --replicas 3

925182251 fu

verall progress: 3 out of 3 tasks
1/3: running [
2/3: running [
3/3: running [
verify: Service converged
root@nishant:/home/nishant/Desktop/Docker -Exploration# _

NAMES.
cranky_wilbur.1.wwecx63j8

_images/dockerService2.png
root@nishant:~# docker container ls

CONTAINER ID IMAGE COMMAND CREATED STATUS
ecdeac5ec090 alpine:latest "ping 8.8.8.8" 3 minutes ago Up 3 minutes
£439d745b2b0 alpine:latest "ping 8.8.8.8" 3 minutes ago Up 3 minutes
9d927ec6e5b5 alpine:latest "ping 8.8.8.8" 3 minutes ago Up 3 minutes
rootgnishant:~# docker container rm -f hopeful_wozniak.1.iznn424wx1wopol7mpkken7sw
hopeful_wozniak.1.1znn424wx1wopo17mpkken7sw

rootgnishant:~# docker service ls

0} NAME MODE REPLICAS IMAGE PORTS.
rcosbedoysds hopeful_wozniak replicated 3/3 alpine:latest
rootgnishant:~# docker container rm -f hopeful_wozniak.1.a3onoekyukd1wvx713btkepxk
hopeful_wozniak.1.a3onoekyukdiwvx713btkopxk

root@nishant:~# docker container ls

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS.
£439d745b2b0 alpine:latest "ping 8.8.8.8" 4 minutes ago Up 4 minutes
9d927ec6e5b5 alpine:latest "ping 8.8.8.8" 4 minutes ago Up 4 minutes
rootgnishant:~# docker service ls

0} NAME MODE REPLICAS IMAGE PORTS.
rcosbedoysds hopeful_wozniak replicated 2/3 alpine:latest
root@nishant:~# _

NAMES

hopeful_wozniak.1.1znn424wx1wopo17mpkken7sw
hopeful_wozniak.3.clpyScrzuacwnnak3sq3n68xn
hopeful_wozniak.2.pnzjg8a112anigks2jlw2waczn

NAMES
hopeful_wozniak.3.clpy5crzuacwnnak3sq3n68xn
hopeful_wozniak.2.pnzjg8a112anigks2jlw2waczn

_images/dockerNetwork2.png
Verify requirements
Set up database

Install

Configure site

Database configuration

Database type *

© MysQL, MariaDB, Percona Server, or equivalent
® postgresqL

O satite

Database name *

postgres.

Database username *

postgres.

Database password

v ADVANCED OPTIONS

Host *

[psal

Port number
o)

5432 2]
Tabl

If more than one application will be sharing this database,
a unique table name prefix - such as drupal_- will prevent
collisions.

name prefix

Save and continue

_images/dockerNetwork3.png
root@nishant:/home/nishant/Desktop# docker service create --name psql --network drupal -e POSTGRES_PASSWORD=mypass postgres
j615249s8qti44mm2ylnyen7k

overall progress: 1 out of 1 tasks

1/1: running [
verify: Service converged

root@nishant:/home/nishant/Desktop# docker service create --name mydrupal --network drupal -p 8080:80 drupal
1d7p9nesgaz2b16xpogdsixev

overall progress: 1 out of 1 tasks

1/1: running [
verify: Service converged
root@nishant:/home/nishant/Desktop# docker service ls

>]

>]

D NAME MODE REPLICAS IMAGE PORTS
ld7ponesgaz2 mydrupal replicated 1/1 drupal:latest *:8080->80/tcp
jois249s8qti psql replicated 1/1 postgres:latest

rootgnishant:/home/nishant/Desktop# _

_images/dockerSwarm1.png
docker node 1s
1D

add7y8c38uxdeudxsvn02tyb
qsveuullzin3abpiwyl plp2
osalayq0enélxtvyqze25120 +

HOSTNAME
nodel
node2
node3

STATUS
Ready
Ready
Ready

AVAILABILITY MANAGER STATUS

Active
Active
Active

Leader

ENGINE VERSION
20.10.0
20.10.0
20.10.0

_images/kube11.png
$ kubectl logs deployment/my-apache
Found 2 pods, using pod/my-apache-5d56b46ch-5ppts

AH00558: httpd: Could not reliably determine the server's fully qualified domain name, using
72.18.0.4. Set the 'ServerName' directive globally to suppress this message

AH00558: httpd: Could not reliably determine the server's fully qualified domain name, using
72.18.0.4. Set the 'ServerName' directive globally to suppress this message

[Wed Feb 24 19:16:50.803327 2021] [mpm_event:notice] [pid l:tid 140322142954624] AH00489: Apz
he/2.4.46 (Unix) configured —- resuming normal operations

[Wed Feb 24 19:16:50.803464 2021] [core:notice] [pid l:tid 140322142954624] AH00094: Command
ine: 'httpd -D FOREGROUND'

nav.xhtml

 Table of Contents

 		
 Docker-Exploration

_images/kube14.png
¢ kubectl get pods -w
NAME READY STATUS RESTARTS AGE

my-apache-5d56b46cb-Sppts 1/1 Running O 3im
my-apache-5d56bd6cb-swgbp 1/1 Running O E

_images/dockerNetwork1.png
root@nishant:/home/nishant/Desktop# docker network 1ls

NETWORK ID
5f100218a94a
6¥837a27aad3
b861445bfaas
77e4c6928cc9
0751f716yv3i0
d3f5543d804e

root@nishant: /home/nishant/Desktop# docker

NAME

bridge
custom_network
docker_gubridge
host

ingress

none

5jeioxk1fsq97fedjxmvzouns

root@nishant: /home/nishant/Desktop# docker

NETWORK ID
5f100218a94a
6¥837a27aad3
b861445bfaas
5jeloxk1fsq9
77e4c6928cc9
0751f716yv3i0
d3f5543d80de

NAME

bridge
custom_network
docker_gubridge
drupal

host

ingress

none

DRIVER
bridge
bridge
bridge
host
overlay
null

DRIVER
bridge
bridge
bridge
overlay
host
overlay
null

SCOPE
local
local
local
local
swarn
local
network create --driver overlay drupal

network 1s
SCOPE
local
local
local
swarm
local
swarm
local

_images/kube15.png
% kubectl expose deployment httpenv --port 8888

service/httpenv exposed
S kubectl get service

NAME TYeE CLUSTER-TP
nttpenv ClusterTe 10.98.182.41
kubernetes ClusterI? 10.96.0.1

EXTERNAL-TP
<none>

BORT (5)
8888/TCP
443/TCP

AGE
10s
2m3ds

_images/kube12.png
follow --tail 1

% kubectl logs deployment/my-apache
Found 2 pods, using pod/my-apache-5d56b46cb-5ppts
[Wed Feb 24 19:16:50.803464 2021] [core:notice] [pid 1:tid 140322142954624] AHO0094: Command line: 'ht

P —

_images/kube13.png
 kubectl describe deployments/my-apache

Name :
Namespac
CreationTimestamp:
Labels
Annotations:
selector:
Replicas:
StrategyType:
MinReadySeconds :
RollingUpdateStrategy:
Pod Template:
Labels: app=my-apache
Containers:

ntepd

<none>

<none>

Environment: <none>

Mounts: <none>

Volume <none>

Conditions:

Type Status

Progressing True
Available True
OldReplicaSets: <none>
NewReplicaSet: my-apach
Events:
Type Reason

ScalingReplica:
ScalingReplicas

my-apache
default

Wed, 24 Feb 2021 19:16:42 +0000
app=my-apache

deployment .kubernetes. 1o/revision: 1
app=my-apache

2 desired | 2 updated | 2 total | 2 available
RollingUpdate

o

25% max unavailable, 25% max surge

Reason
NewReplicaSetAvailable
MinimunReplicasAvailable

ne-5d56b46ch (2/2 replicas created)

Message

Set 20m deployment-controller Scaled up re
Set 28m deployment-controller Scaled up re

_images/kube18.png
$ kubectl get namespaces

NAME
default
Kkube-node-lease
Kkube-public
P———
kubernetes-dashboard

N

STATUS
Active
Active
Active
Active
Active

2m36s
2m38s
2m38s
2m38s
2m25s

_images/kube19.png
$ kubectl create deployment test --image=nginx --dry-run
deployment .apps/test created (dry run)
S kubectl create deployment test —-image=nginx -—-dry-run o yaml
apiVersion: apps/vl
kind: Deployment
metadata:
creationTimestamp: null
1abels
app: test
name: test
spec:
replicas: 1
selector:
matchLabels:
app: test

creationTimestamp: null

labels
app: test

spec:

contatners:

- image: nginx
name: nginx
resources: {}

0

_images/kube16.png
S kubectl expose deployment httpenv —-port 8888 ——name httpenv-np ——type NodePort
service/nttpenv-np exposed
S kubectl get service

NAME TYPE CLUSTER-TP EXTERNAL-IP PORT(S) AGE
nttpenv. ClusterIp 10.98.182.41 <none> 8888/TCP 1am
httpenv-np NodePort 10.109.143.207 <none> 8888:30753/TCP 55

kubernetes ClusterIP 10.96.0.1 <none> 443/1CP 16m

_images/kube17.png
$ kubectl expose deployment httpenv --port 8888 --name httpenv-lb --type LoadBalance:

service/nttpenv-1b exposed
$ kubectl get service

NAME TYPE CLUSTER-TP
nttpenv. ClusterIp 10.98.182.41
httpenv-1b LoadBalancer 10.109.26.240
httpenv-np NodePort 10.109.143.207
kubernetes ClusterIP 10.96.0.1

EXTERNAL-TP
<none>
<pending>
<none>
<none>

PORT(S
8888/TCP
8888:31117/TCP
8888:30733/TCP
443/TCP

21m
3s
ems3s
23m

_images/kube2.png
[nodel ~]% kubectl version
Lient Version: version.Info(Major:"1%, Minor:"207, Gi
v2020-12-18T12:05: 2527, Goversion:"gol.15.5%, Compile
Jserver Version: version!InfoiMajor:v1%, Minorin2om, Gi
- #2021-02-18T16:03:002", GoVersion:"gol.15.8%, Compile

_static/plus.png

_images/kube20.png
$ kubectl create job test --image=nginx --dry-run -o yaml
apiVersion: batch/vi
kind: Job
metadata:
creationTimestamp: null

creationTimestamp: null

spec:
containers:

_images/kube21.png
§ kubectl create deployment test
deployment .apps/test created
S kubectl expose deployment/test
apiversion: vi
kind: Service
metadat:
creationTimestamp: null
label
app: test
name: test

protocol: TCP
targetPort: 80

selector:
app: test
status:

loadBalancer: [}

_images/kube24.png
controlplane $ kubectl api-versions
admissionregistration.k8s.io/vl
admissionregistration.k8s.io/vibeta:
apiextensions.kes.10/vl
apiextensions.kes.io/vibetal
apiregistration.k8s.io/vl
apiregistration.k8s.io/vibetal
apps/v1

authentication.k8s.io/vl
authentication.k8s.io/vibetal
authorization.k8s.io/vl
authorization.kes.io/vibetal
autoscaling/vl

_images/kube25.png
$ kubectl explain services --recursive
KIND: Service
VERSION: vl

DESCRIPTION:
Service is a named abstraction of software service (for example, mysql)
consisting of local port (for example 3306) that the proxy listens on, and
the selector that determines which pods will answer requests sent through
the proxy.

FIELD:
apiVersion <string>
kind <string>

metadata <object>

annotations <map[string]string>
clusterName <string>
creationTimestamp <string>
deletionGracePeriodSeconds <integer>
deletionTimestamp <string>
finalizers <[string>
generateNane <string>
generation <integer>
labels <map[string)string>
managedFields <[]Object>

apiversion <string>

fieldsType <string>

fieldsvi <map(string]>

manager <string>

operation <string>

time <string>
nare <string>

namespace <string>
ownerReferences <[]Object>

_images/kube22.png
controlplane § kubectl cluster-info
1s running at https://172.17.0.60:6443

cONS 1s running at https://172.17.0.60:6443/api/v1/namespaces/kube-

vices/kube~dns:dns/proxy

tem/se:

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'

_images/kube23.png
controlplane $ kubectl api-resources

NAME
MESPACED KIND

bindings

ue Binding
componentstatuses

1se ComponentStatus.
configmaps

ue ConfigMap
endpoints

ue Endpoints
events

ue Event

limitranges

SHORTNAMES ~ APIGROUR

s

cm

3

1imits

e

fa

tr

e

tr

_images/kube28.png
$ kubectl diff -f dep/deployl.yml
diff —u -N /tmp/LIVE-899083098/apps.v1.Deployment .default .nginx-d
deployment
~— /tmp/LIVE-893083098/apps.v1.Deployment .default .nginx-deployme:
+++ /tmp/MERGED-982051057/apps.v1.Deployment .default .nginx-deployr
o8 -6,7 +6,7 ee
Kubect1.kubernetes.1o/last-applied-configuration: |
{"apiVersion®:*apps/vi®, "kind" : "Deployment®, "metadata”: {"ar

spect: ("replicas":2, "selector”:(*matchLabels":{*app":"nginx")}, "te
{"image”: "nginx:latest®, "name": "nginx {"containerp

creationTimestamp: *2021-02-27T13:00:012
- generation: 2
+ generation: 3

name: nginx-deployment

namespace: default

resourceVersion: "5247"
o8 -14,7 +14,7 g€

uid: 1b2de709-beas:

ae9-24£6-0452a6£7£11b.

spec:
progressbeadlineSeconds: 600
- replicas: 2

+ replicas: 3
revisionHistoryLimit: 10
selector:

matchLabels:
exit status 1

_images/kube3.png
(nedel -7 kubsctl run my-nginx
Jod/my-nginx created

‘image nginx

_images/kube26.png
% kubectl explain services.spec
KIND: Service
VERSION: v1

RESOURCE: spec <Object>
DESCRIPTION:
Spec defines the behavior of a service.
https://git.kes.1o/community/contributors/devel/sig-archs

ServiceSpec describes the attributes that a user creates

FIELDS:
clusterT? <string>

clusterT? is the IP address of the service and is usually
by the master. If an address is specificd manually and is
others, it will be allocated to the service; otherwise, c
service will fail. This field can not be changed through
values are "None®, empty string (*%), or a valid IP addre
specified for headless services when proxying is not requ
to types ClusterIP, NodePort, and LoadBalancer. Ignored
Externallame. More info:
https://kubernetes. 1o/docs/concept s/services-networking/s

externallPs <[Istring>
externallPs is a list of IP addresses for which nodes in
also accept traffic for this service. These IPs are not =
Kubernetes. The user is responsible for ensuring that tra
node with this IP. A common example is external load-bala
part of the Kubernetes system.

_images/kube27.png
$ kubectl explain deployment.spec
KIND: Deployment
VERSION: apps/v1

RESOURCE: spec <Object>

DESCRIPTION:
Specification of the desired behavior of the Deployment

DeploymentSpec is the specification of the desired beha
Deployment .

FIELDS:
minReadySeconds <integer>
Minimum number of seconds for which a newly created poc
without any of its container crashing, for it to be cor
Defaults to O (pod will be considered available as soor

paused <boolean>
Indicates that the deployment is paused.

progressbeadlineseconds <integer>
The maximum time in seconds for a deployment to make pr
considered to be failed. The deployment controller will
failed deployments and a condition with a ProgressDeadl
will be surfaced in the deployment status. Note that pr
estimated during the time a deployment is paused. Defau

replicas <integer>
Number of desired pods. This is a pointer to distinguis
zero and not specified. Defaults to 1.

_images/kube5.png
[nodel ~]$ kubectl get all

NRUE READY STATUS RESTARTS AGE
pod/my-nginx 0/l Pending 0 114
hE e CLUSTER-TP EXTERNAL-T? PORT(S) AGE

service/kubernetes ClusterIP 10.96.0.1 <none> 443/7CP 14m

_images/kube6.png
Pods & Controllers

Deployment

VOL NIC

k8s

‘ Docker

_images/kube4.png
[nodel ~]% kubectl get pods
e READY STATUS RESTARTS AGE
w-nginx 0/1 DPending O P

_images/kube9.png
[nodel ~]% kubectl create deployment my-apache
ieploynent . apps /ny-apache created
[nodel |3 kubectl get all

~image httpd

MR READY STATUS RESTARTS AGE
cod/my-apache-To63EAdB4skSpnk O/1 Pending O .

e Tr0E CLUSTER-TP EXTERNAL-TP PORT(S)
sorvice/rubsrnstes Clusterl? 10.96.0.1 <none> a83/7cp
e READY UP-TO-DATE AVAILABLE AGE
ieploynent .apps /my-apache 0/1 1 o o

e DESIRED CURRENT READY AGE

eplicaset.apps/my-apache-Tb68£dd849 1 1 o 85

ace
am

_images/logo.png

_images/kube7.png
nodel ~]3 kubectl create deployment my-nginx --image nginx
leployment .apps/my-nginx created

_images/kube8.png
[nodel ~]% kubectl get all

BE READY STATUS RESTARTS AGE
od/my-nginx 0/l Pending 0 2In
od/my-ngink-6b74bIIEIIx4csm 0/1 Pending O =

e Tr0E CLUSTER-TP EXTERNAL-TP PORT(S) AGE
sorvice/kubsrnstes Clusterl? 10.96.0.1 <none> 283/Tce 3am
e READY UP-TO-DATE AVAILABLE AGE
ieployment .apps/my-nginx O/1 1 o =

e DESIRED CURRENT READY AGE

replicaset.apps/my-nginx-6b74b79£57 1 1 o 7=

_images/swarm2.png
Gossip network

_images/networking.png

_images/swarm1.png
Manager

Manager

Manager

-

-

-

Certificate
Authority

Certificate
Authority

Certificate
Authority

Worker

Worker

-

-

