Docker-Exploration
Release 1.0.0

Nishant Baheti

Jan 01, 2023

10

11

12

13

14

15

16

Docker used for documentation : Docker CE (Community Edition)
Some Basic Docker Commands

Port

What happens behind docker run

Points to Notice

Examples

6.1 nginx e
6.2 MONZO .+ . v v vt e e e e e e e e e e e e e e
6.3 mysql e e

Docker Networks

DNS Naming (inter container communication)

8.1 trythis

IMAGE

9.1 ImageLayers
9.2 Imagerepresentation Lo e

DOCKERFILE

PRUNE

Container lifetime and persistent data
PERSISTENT DATA

Docker Compose

14.1 docker-compose CLI
14.2 docker-compose versioningo Lol

Containers Everywhere

15.1 Somemajortasks Lo oL

Docker Swarm - container orchestration

16.1 docker swarminit
16.2 PLAYGROUND i e

ADDITIONAL DOCS

11

.................. 11
.................. 11
.................. 11

13

15

.................. 15

17

.................. 17
.................. 18

19

21

23

25

27

.................. 27
.................. 27

29

.................. 29

16.3 StePS . . o e e e e e e e e e e e e e e

17 Overlay Multi Host Networking
17.1 Routing Mesh (Internal Load Balancer)

18 docker stack
18.1 Production Grade COmpoSe o v it it e e e e e e e e e e e e e

19 docker secrets
20 Swarm App LifeCycle

21 Kubernetes
21.1 sandbOX oL e e e
21.2 Other flavours o e e e e e e e
21.3 Cloud providers o v i i e e e e e e e e e e e e e e e
21.4 Terminologies L e e
215 inplay with k8s . . . o o o o o e e e
21.6 Scaling ReplicaSets L e e e
217 Service TYPES . . v v v v e
21.8 ClusterIP (default) e e e e e e e
21.9 NodePort e e e e e
21.10 LoadBalancer e e e e e e e
21.11 ExternalName L e e e e e e e e e e e e

22 Kubernetes Management Techniques
22.1 Generators (Automation behind commands) o
22.2 Management approaches oL e e e e e e e e e e e
22.3 Kubernetes Configuration YAML e e e e e
22.4 Labelsand Annotations e e e e e e
22.5 Storagein K8s e e e e e
22.6 Ingress Controller L . L e e e e e e
2277 CUSIOM TESOUICES . « & v v v v v e vt e
22.8 Higher Deployment Abstractions e e
229 NaMESPACES + . v v v v v e
22.10 Docker Security o oL e e e e e e e e e e e e
22.11 Docker Bench Sceurity L e

23 Indices and tables

37
39

41
41

43

45

47
47
47
47
47
49
50
52
52
52
52
53

55
55
57
57
59
60
60
61
61
61
61
61

63

CHAPTER
ONE

DOCKER USED FOR DOCUMENTATION : DOCKER CE (COMMUNITY
EDITION)

docker

Fig. 1: logo

Fig. 2: conceptl

* go to https://get.docker.com/

* take the script
* install it- easy-peasy

e curl -sSL https://get.docker.com/ | sh

https://get.docker.com/
https://get.docker.com/

Docker-Exploration, Release 1.0.0

2 Chapter 1. Docker used for documentation : Docker CE (Community Edition)

CHAPTER
TWO

SOME BASIC DOCKER COMMANDS

Command Description
docker version Get the version information of docker.
docker info Get info.

docker images

Get all available images in local repo.

docker container ps / docker container ps -a

get running containers (-a all stopped & running)

docker container run -p 80:80 -d —name
test_container nginx

Run a container with nginx at port 80. bridge host IP 80 and container
IP 80.

docker container run —rm -it image_name

run container and automatically remove upon close

docker container logs test_container

get logs for mentioned container

docker container top test_container

Get process/daemons running in the container

docker container rm ...

Remove stopped container. Containers to be removed should be
stopped.

docker container rm -f

Remove forcefully.

docker container inspect test_container

details of container config

docker container stats

show stats mem usage, cpu usage etc.

docker container run -it —name test_name
image_name bash

run container (-i —> interactive,-t —> pseudo tty/ssh) and opens
bash(changed default commands)

docker container start -ai container_name

starts existing (-ai start with given starting command) container

docker container stop container_name

stops existing container

docker container exec -it container _name
bash

open bash in already running container

docker history image_name:tag

layer information of the image

Docker-Exploration, Release 1.0.0

4 Chapter 2. Some Basic Docker Commands

CHAPTER
THREE

PORT

-p 8080:8080

[host_os_port :

docker_container_port]

Docker-Exploration, Release 1.0.0

6 Chapter 3. Port

CHAPTER
FOUR

WHAT HAPPENS BEHIND DOCKER RUN

looks for the image
locally in the image if finds then takes it.
cache
downloads the latest Gives it a Virtual IP
L ot ::f:o:g"m"’ ! version of it Creates container on a private network
(image:latest) inside docker engine.
opens up port 80 on
host and forwards 1o
port 80 in container.
Fig. 1: Image

Docker-Exploration, Release 1.0.0

8 Chapter 4. What happens behind docker run

CHAPTER
FIVE

POINTS TO NOTICE

* containers aren’t mini VM’s, they are just processes(binary files) running on HOST Operating Systems.

 Limited to what resource they can access.

 Exit when process is stopped

Host OS

VIRTUAL MACHINE ARCHITECTURE

CONTAINER 1

‘

APP 1

BINS/LIBS

Fig. 1: concept2

CONTAINER 2

APP 2
BINS/LIBS

Docker Engine

Host OS

DOCKER ARCHITECTURE

Docker-Exploration, Release 1.0.0

10 Chapter 5. Points to Notice

CHAPTER
SIX

EXAMPLES

6.1 nginx

¢ docker pull nginx:latest
* docker run -p 80:80 —name nginx -d nginx:latest

e curl localhost

6.2 mongo

¢ docker pull mongo:latest
e docker run -p 27017:27017 —name mongo -d mongo:latest

* mongo —host localhost —port 27017

6.3 mysq|l

* docker pull mysqgl:latest
¢ docker run -p 3306:3306 —name mysql -e MYSQL_RANDOM_ROOT_PASSWORD-=yes -d mysql:latest
* get first random password from docker container logs mysql (GENERATED ROOT PASSWORD)
* mysql -uroot -p[password from previous step] -h127.0.0.1 -P3306
or
¢ docker run -p 3306:3306 —name mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:latest
* mysql -uroot -p my-secret-pw -h127.0.0.1 -P3306

11

Docker-Exploration, Release 1.0.0

12 Chapter 6. Examples

CHAPTER
SEVEN

-p 80:80

c1

c2

nginx

Apache hitpd

-p 8080:80

Net_my_app

traftic

Fig. 1: concept3

DOCKER NETWORKS

Host Network

v

port 80

4

Hardware

Firewall

)

13

Docker-Exploration, Release 1.0.0

Settings.IPAddress }}” container_name

Command Description
docker container port container_name get port info
docker container inspect —format “{ { .Network- | get IP

docker network 1s

show networks

docker network inspect net_name

inspect a network

docker network create —driver

create a network

docker network connect net_id container_id

attach

docker network disconnect net_id container_id

detach

docker container run —name ¢_name —network
net_name image_name

specifying network name in container while starting

docker container run -name c_name -net
net_name —net-alias alias_name image_name

specifying network name and alias in container while starting
(same alias containers can be called with same DNS name)

14

Chapter 7. Docker Networks

CHAPTER
EIGHT

DNS NAMING (INTER CONTAINER COMMUNICATION)

containers cant rely on IP’s for inter-communication.
bridge (default) doesnt have this option.
one container can communicate with another in same network with container name(instead of IP).

it is easier in docker compose.

try this

docker pull nginx:latest

docker network create custom_network

docker network Is

docker run -it -d -p 8081:80 —network custom_network —name nginx2 nginx:latest
docker run -it -d -p 8080:80 —network custom_network —name nginx1 nginx:latest
docker container Is

docker container exec -it nginx1 curl http://nginx2

15

http://nginx2

Docker-Exploration, Release 1.0.0

16 Chapter 8. DNS Naming (inter container communication)

CHAPTER
NINE

IMAGE

* app binaries and dependencies
* metadata about image data or how to run the image

* An image is an ordered collection of root filesystem changes and corresponding execution parameters for use
within a container runtime.

* Not a complete OS. No kerel ,kernel modules etc.

9.1 Image Layers

image
env
apt
ubuntu
image1 image2
port other operation | only diff is added in runtime container
copy copy common till here
apt apt
Debian jessie | Debain jessie

example of layers:

##
#
B
#1
i
L

Fig. 1: imagelayers

17

Docker-Exploration, Release 1.0.0

9.2 Image representation

<user>/<repo>:<tag>

18 Chapter 9. IMAGE

CHAPTER
TEN

DOCKERFILE

Dockerfile is a recipe for creating image.

Command

Description

docker image build -f some-dockerfile

build image from a dockerfile

docker image build -t custom_nginx .

build docker image with tag custom_nginx from current working directory

Keyword | Description

FROM All dockerfile must have to minimal distribution. want to go completely from scratch use “FROM
scratch”

ENV Setting up environment variables. inject main key/values for image.

RUN Run shell commads

EXPOSE | Expose ports on docker virtual network still need to use -p / -P on host os

CMD Final command to be run every time container is launched/started

COPY Copy from local(host) os to docker(guest/virtual) os

ENTRY P | Entrypoint for a container at runtime

OINT

WORKDTI | is prefered to using “RUN cd /some/path”

R

VOLUME | Create anew volume location and assign it to the directory in the container will outlive the container
when container is updated. (requires manual deletion)

ADD

It is adviced to keep least changing things in the

docker images to keep on top(initial steps) and more

variable things in later steps so that whenver any step changes or updates till that.
—.step cache will help to

speed up the process of building the image.

19

Docker-Exploration, Release 1.0.0

20

Chapter 10. DOCKERFILE

CHAPTER
ELEVEN

Command

Description

docker image prune

remove all dangling images

docker system prune

remove everything

PRUNE

21

Docker-Exploration, Release 1.0.0

22

Chapter 11. PRUNE

CHAPTER
TWELVE

Eal

hd

CONTAINER LIFETIME AND PERSISTENT DATA

immutable (unchanging) and ephemeral (temporary/ disposable).
“immutable infrastructure” : only re-deploy containers, never change.
But if there is some data that has to be present (like database or unique data).

data can be preserved when container is getting updated with latest version. docker gives us feature to ensure
“separation of concerns”.

This is called as “Presistent data”.

2 solutions for this - Volumns and Bind Mounts.

VOLUMES : make special location outside of container UFS(union file
system).

BIND MOUNT : link container path to host path.

23

Docker-Exploration, Release 1.0.0

24

Chapter 12. Container lifetime and persistent data

CHAPTER
THIRTEEN

PERSISTENT DATA

+ DATA VOLUMES

1. Create a new volume location and assign it to the directory in the container

2. will outlive the container when container is updated.

3. requires manual deletion

Fig. 1: volumelnfo

Command Description

docker volume 1Is list of volumes

docker volume inspect volume_name | information about volume
docker volume create volumne _name | create volume

inishant:/

Fig. 2: volumesl

docker container run -d --name mysgl -e MYSQL_ALLOW_EMPTY_PASSWORD=True -v mysql-db:/var/
—1lib/mysgql mysqgl:latest

* if name is provided then it will register by name otherwise by default a random name would be generated. (Named
volumes)

* -v [name]:[path/to/volume]

25

Docker-Exploration, Release 1.0.0

Fig. 3: volumes2

* BIND MOUNTING

1. Maps a host file or dir to container file or directory.

basically two locations pointing to same file.

Skips UFS, host files overwrite any in container.

Cant use Dockerfile, has to be mentioned in docker container run command.

-v [/host/fs/path]:[/container/fs/path]

AR S

Try

docker container run -it -d -p 3000:80 --name nginx -v /home/nishant/Desktop/Docker-
—Exploration/htmlexample: /usr/share/nginx/html nginx:latest

26 Chapter 13. PERSISTENT DATA

CHAPTER
FOURTEEN

DOCKER COMPOSE

» Configure relationships between containers.
» Save docker container run settings in easy-to-read file

* One liner developer env setup.

1. YAML file - containers, networks, volumes, env.(default docker-compose.yml/yaml)

2. CLI tool - docker-compose

14.1 docker-compose CLI

* CLI tool is not a production grade tool but ideal for development and test.

Command Description

docker-compose up setup volumes,networks and start all containers

docker-compose up -f file_name | setup volumes,networks and start all containers with a custom file_name
docker-compose down stop all containers and remove containers/vols/nets

docker-compose up -d setup volumes,networks and start all containers and detach
docker-compose ps get services running

docker-compose run

docker-compose stop

14.2 docker-compose versioning

There are three legacy versions of the Compose file format:
* Version 1. This is specified by omitting a version key at the root of the YAML.
* Version 2.x. This is specified with a version: ‘2’ or version: ‘2.1, etc., entry at the root of the YAML.

* Version 3.x, designed to be cross-compatible between Compose and the Docker Engine’s swarm mode. This is
specified with a version: ‘3’ or version: ‘3.1’, etc., entry at the root of the YAML.

27

Docker-Exploration, Release 1.0.0

28

Chapter 14. Docker Compose

CHAPTER
FIFTEEN

CONTAINERS EVERYWHERE

15.1 Some major tasks

automate container lifecycle

easily scale up/down/out/in

container recreation upon failing

replace container without downtime (blue/green deploy)
control/track container started

create cross-node virtual network

only trusted servers run containers

store secrets, keys, passwords and access them in right containers

29

Docker-Exploration, Release 1.0.0

30

Chapter 15. Containers Everywhere

CHAPTER
SIXTEEN

DOCKER SWARM - CONTAINER ORCHESTRATION

Fig. 1: swarm5

* Swarm mode is a clustering solution built inside Docker

¢ docker swarm, docker node, docker service, docker stack, docker secret

Manager Manager Manager
o] e @ |
\— g—

Certificate Certificate Certificate
Authority Authority Authority
Worker Worker Worker
gyl ([@l [@

31

Docker-Exploration, Release 1.0.0

Raft consensus group
Internal distributed state store .

l I |

Manager

|
|
Woarker |
|
|

Gossip network

. nginx. 1 nginx:latest
service
____________________ I e
3 nginx .
replicas nginx. 2

swarnm manager

nginx.3 nginx:latest

available node

32

Chapter 16. Docker Swarm - container orchestration

Docker-Exploration, Release 1.0.0

|

API

Orchestrator
Manager Node

Scheduler

C
‘E C Allocator
1C

C

Dispatcher @]

Worker Node

Executor I

docker service create

Accepts command from client and creates service object
Reconciliation loop for service objects and creates tasks
Allocates P addresses to tasks

Assigns nodes to tasks

Checks in on workers

Worker I Connects to dispatcher to check on assigned tasks

Executes the tasks assigned to worker node *,_,

16.1 docker swarm init

* PKI and security automation

1. Root signing certificate created for swarm

2. certificate is issued for first manager node

3. join tokens are created

* RAFT database created to store root CA, configs and secrets

1. no additional key value storage system

2. replicates logs amongs managers.

Command

Description

docker swarm init

initialize

docker node 1s

list down nodes

docker service create

creating a container service

docker service Is

list down services

docker service ps service_name

process information

docker service update service_id —replicas number | update replicas

docker service rm service_name

remove service and delete all containers one by one

* if a service is running and we stop one of its replicas by running “docker container rm -f some_id/name” then
it will show in the results of “docker service 1s” (one less replica) but within seconds it will again start it and it
will show in the result if “docker service ps service_name” that one service was stopped.

16.1. docker swarm init

33

Docker-Exploration, Release 1.0.0

a mi

a minute a

Fig. 2: docker-servicel

nishant@nishant: ~
-

Fig. 3: docker-service2

34 Chapter 16. Docker Swarm - container orchestration

Docker-Exploration, Release 1.0.0

16.2 PLAYGROUND

* https://labs.play-with-docker.com

* use above link to create instances and play with them

16.3 Steps

* get 3 instances

e in one instance run

docker swarm init --advertise-addr <public_ip>

this will give a url like

docker swarm join --token <some token>

e run this command in other two instances to join them in this cluster
¢ now docker swarm commands cant be run in these worker nodes

¢ Run in the leader instance

docker node 1s

Fig. 4: dokcer-swarm1

* change the role of a node

Fig. 5: docker-swarm?2

* get the manager token to join anytime and add instance with predefined manager role
* get the worker token to join anytime

* now create a service with 3 replicas

16.2. PLAYGROUND 35

https://labs.play-with-docker.com

Docker-Exploration, Release 1.0.0

Fig. 6: docker-swarm3

Fig. 7: docker-swarm4

36 Chapter 16. Docker Swarm - container orchestration

CHAPTER
SEVENTEEN

OVERLAY MULTI HOST NETWORKING

choose —driver overlay when creating network
for container to container traffic inside a Single Swarm
Optional IPSec (AES) encryption on network creation

Each service can connect to multiple networks

37

Docker-Exploration, Release 1.0.0

Command Description

docker network create —driver overlay network_name create a overlay network
r shant: / shant <t @ tw

creating a network

creating two services on one net-
work

Drupal °#

Database configuration

Database type *

MySQL, MariaDB, Percona Server, or equivalent
.
Set up database PostgreSQL

SQLite
Install site

) Database name *
Configure site
postgres

Database username *

postgres

Database password

¥ ADVANCED OPTIONS

Host *

psql

Port number

>

collisions.

accessing them by their service

name (look at host)

38 Chapter 17. Overlay Multi Host Networking

Docker-Exploration, Release 1.0.0

17.1 Routing Mesh (Internal Load Balancer)

Routes/distributes ingress (incoming) packets for a service to a proper task
spans all the nodes
Uses IPVS from linux kernel (kernel primitives)
Load balances swarm services across their tasks
ways to work
— container to container overlay network (talking to virtual IP/VIP)
— external traffic incoming to publishing ports (all nodes listen)

stateless load balancing

17.1.

Routing Mesh (Internal Load Balancer)

39

Docker-Exploration, Release 1.0.0

40

Chapter 17. Overlay Multi Host Networking

CHAPTER
EIGHTEEN

DOCKER STACK

18.1 Production Grade Compose

* New layer of abstraction to swarms called stacks

* accepts compose files

¢ docker stack deploy

services task and container
A A
|| servicel -| node 1 |
[-| node 2 | || Volumes ||
e |
Stack ->|| service2 -| node 1 |

[-| node |
[[===mmmmmmm e | || Overlay Networks ||
|| service3 -| node 1 |
| -| node 2 |

Command Description

docker stack deploy -c compose_file app_name

queue deploy services from a compose file

docker stack 1s

list all the apps in the stack

docker stack ps app_name

list down services in the app

docker stack services app_name

gives important info about services like replicas,mode etc.

41

Docker-Exploration, Release 1.0.0

42

Chapter 18. docker stack

CHAPTER
NINETEEN

* key value store in docker run time

* attach it to services only those can use it

DOCKER SECRETS

Command

Description

docker secret create secret_name secret_file.txt

put value in secret by a file

echo “some_value” | docker secret create secret_name

put value in secret by echoing

docker secret Is

list down secrets

with service

docker service create —name service_name —secret se-
cret_name

create a service with a secret mentioned that can be used
by container

docker service update —secret-rm secret_name

remove secret

43

Docker-Exploration, Release 1.0.0

44

Chapter 19. docker secrets

CHAPTER
TWENTY

SWARM APP LIFECYCLE

Three important things in this trilogy is swarm, stack and secrets

$ docker-compose up #for development env
$ docker-compose up #for CI env
$ docker stack deploy #for production env

45

Docker-Exploration, Release 1.0.0

46

Chapter 20. Swarm App LifeCycle

CHAPTER
TWENTYONE

KUBERNETES

* container orchestration
* runs on top of docker (usually)

* provides api/cli to manage containers across servers

21.1 sandbox

* https://labs.play-with-k8s.com/

¢ katacoda

21.2 Other flavours

e minikube

¢ MicroK8s

21.3 Cloud providers

¢ Azure Kubernetes Services (AKS)
« AWS (EKS)
* Google Cloud

21.4 Terminologies

¢ kubectl - cube control (cli)

* node - single server inside the cluster

kubelet - Kubernetes agent running on nodes

In swarm in build docker swarm agent is available for workers to talk back to the.
—master nodes kubernetes needs one explicitly

* control plane - set of containers that manages the clusters

47

https://labs.play-with-k8s.com/

Docker-Exploration, Release 1.0.0

— includes api server , scheduler, control manager, etcd and more

— sometimes called the master

MASTER

etcd

api

scheduler
controller manager
core dns

based on need

Docker

NODE

kubelet
kube-proxy

Docker

| |
| |
| |
| |
I . |
| based on need |
| |
| |
| |
| |
| |

* pod - one or more containers running together on one Node
— basic unit of deployment, containers are always in pods

* controller - for creating /updating pods and other objects

Deployment

ReplicaSet
StatefulSet

DaemonSet

— Job

CronJob
* service - network endpoint to connect to a pod
* namespace - filter group

* secrets, ConfigMaps ...

48 Chapter 21. Kubernetes

Docker-Exploration, Release 1.0.0

21.5 in play with k8s

* I created 3 instances
* [am going to make nodel as master/ manager node
* Rest of the nodes will be worker nodes

* Main goal is to create deplotyments

Snaps Description
kubectl get nodes get nodes connected to
the cluster

starting master node

(command already
provided with k8s play-
ground)

getting version (one client
and one server)

get pods
create deployment

kubectl get pods
kubectl create deployment my-nginx —image nginx

5 get all contents
kubectl delete deployment my-nginx delete the deployment

Pods --> ReplicaSet --> Deployment

21.5. in play with k8s 49

Docker-Exploration, Release 1.0.0

Pods & Controllers

Deployment

Replica
pod2
odl

VOL NIC

k8s ginX
| L

\ Docker

Fig. 1: kube6

21.6 Scaling ReplicaSets

50 Chapter 21. Kubernetes

Docker-Exploration, Release 1.0.0

Description

logs

last 1 line logs

logs follow changes and tail

describe pod/deployments etc

watch

21.6. Scaling ReplicaSets

51

Docker-Exploration, Release 1.0.0

21.7 Service Types

kubectl expose creates a service for exisiting pods
Service is a stable address for pod
it we want to connect to pod, we need a service
CoreDNS allows us to resolve services by name
Types of services :

1. ClusterIP

2. NodePort

3. LoadBalancer

4. ExternalName

21.8 ClusterlP (default)

Single, Internal Virtual IP allocation
Reachable within the cluster

pods can reach service on port number

21.9 NodePort

High port on each node
Outside the cluster
port is open for every node’s IP

Anyone can reach node can connect

21.10 LoadBalancer

* Only available when infrastructure providers gives it (AWS ELB etc)

¢ Create NodePort+ClusterIP, connect LB to NodePort to send

Controls a Load Balancer external to the cluster

52

Chapter 21. Kubernetes

Docker-Exploration, Release 1.0.0

21.11 ExternalName

* Add CNAME DNS record to CoreDNS only

* Not used for pods , but for giving pods a DNS name that can be used outside Kubernetes cluster.

Snaps

Description

create service expose port with cluster IP

create service NodePort. different than docker as left
port if internal port and right one is node port for out-
side cluster

create service with LoadBalancer

namespaces

21.11. ExternalName

53

Docker-Exploration, Release 1.0.0

54

Chapter 21. Kubernetes

CHAPTER
TWENTYTWO

KUBERNETES MANAGEMENT TECHNIQUES

22.1 Generators (Automation behind commands)

* Helper templates

* Every resource in kubernetes has a ‘spec’ or specification

> kubectl create deployment smaple --iamge nginx --dry-run -o yaml

* output those templates --dry-run -o yaml

* these yaml defaults can be a starting points to create new ones

55

Docker-Exploration, Release 1.0.0

Snaps Description

status: {}) Get Generator info for de-
ployemnt

Get Generator info for job

s Management Techniques

Get Generator info for ex-
pose

Docker-Exploration, Release 1.0.0

Imperative

Decalarative

how program operates

what a program should accomplish

ex.- making your own coffee

ex.- give instructions to a barista

not easy to automate

automation is good

know every step

dont know current state, only final result is known

requires to know all yaml keys

22.2 Management approaches

* Imperative commands

— create, expose, edit, scale etc
* Imperative objects

— create -f file.yml , replace -f file.yml
* Declarative objects

— apply -f file.yml

22.3 Kubernetes Configuration YAML

* Each file contains one or more configuration files

» Each manifest describes an API object (deployment, job, secret)

* Each mainfest needs these four parts-
— apiVersion:
- kind:

metadata:

— spec:

e kubectl apply -f <directory>/

* selectors is used for patternmatching for different services

22.2. Management approaches

57

Docker-Exploration, Release 1.0.0

info Description

cluster cluster info

kind api resources (kind will give info for
yaml file)

apiVersion api versions

metadata only name of the service is required

spec all the action

explain services recursively

explain services get keywords

explain services description

explain services get keywords

58

ernetes Management Techniques

DS DR, DS Y, D Y

Docker-Exploration, Release 1.0.0

* https://kubernetes.io/docs/reference/#api-reference

Snaps

Description

find the difference between running ser-

vice and updated yml

22.4 Labels and Annotations

e labels under metadata

* for grouping, filtering etc.

» examples - tier: frontend, app: api, env: prod etc.(There are no specific standards to do so, it depends on the

team you are working in)

* no meant to hold complex or large information, instead of 1abel use annotaions.

* filter on label used in a get

— kubectl get pods -1 app=nginx
* apply commands only for matching labels

— kubectl apply -f some_file.yaml -1 app=nginx

apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx-deployment
spec:
selector:
matchLabels:
app: nginx
minReadySeconds: 5
template:
metadata:

(continues on next page)

22.4. Labels and Annotations

59

https://kubernetes.io/docs/reference/#api-reference

Docker-Exploration, Release 1.0.0

(continued from previous page)

labels:

app: nginx
spec:

containers:

- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80

22.4.1 Label Selectors

* Indicators to services and deployments, which pods are theirs to pick up.

in above example the resources are going to match labels from selectors to classify nodes and apply things.

22.5 Storage in K8s

Initial idea behind containers to be immutable, distributed and replaceable (in hindsight
statefulness came later on as feature to have something stored to be used if container
instance changes like database)

* we can create VOLUME similar to docker swarm
* 2 types
— Volumes
* Tied to lifecycle of a pod
% All containers in a pod can share them
— Persistent Volumes
% Created at cluster level, outlives a Pod
% Sep storage config from pod
multiple pods can share them

¢ CSI (Container Storage Interface) plugins from different vendors to connect to storage to have uniformity.

22.6 Ingress Controller

* Lets talk about http
e How do we route outside connections based on hostname or url?
e ingress controller is the way to do it.

* Ingress controller is the way to differenciate different routes(considering all of them are using 80 or 443) hosted
in a cluster.

e It is not inherently installed in k8s.

» Nginx is a populer one, but other examples are Taefik, HAProxy, etc.

60 Chapter 22. Kubernetes Management Techniques

Docker-Exploration, Release 1.0.0

* Implemention is specific to controller chosen.

22.7 Custom resources

Reference

Simply just additional API extensions that are not default in k8s but they can be part of k8s functionality once added.

22.8 Higher Deployment Abstractions

¢ We have yaml files/ configurations, but how to use them for deployment.
* Helm is the most populer one to do so. Helm is to k8s, what k8s is to containers. yaml templates.

* Compose on k8s comes with docker desktop. Instead of going to docker stack it will ask for k8s deployment
(need to try this out).

* most distros support Helm.

New things CNAB and docker app

22.9 Namespaces

user@user~/$ kubectl get namespaces
user@user~/$ kubectl get all --all-namespaces
user@user~/$ kubectl config get-contexts

22.10 Docker Security

Reference
https://docs.docker.com/engine/security/

https://sysdig.com/blog/20-docker-security-tools/

22.11 Docker Bench Sceurity

https://github.com/docker/docker-bench-security

in a bunch of docker official images available online, there are users created groupadd & useradd. Our
job while using those images is use the user mentioned and not run the image with root previleges.

WORKDIR /app
USER <user_name>

22.7. Custom resources 61

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://github.com/BretFisher/ama/issues/17
https://docs.docker.com/engine/security/
https://sysdig.com/blog/20-docker-security-tools/
https://github.com/docker/docker-bench-security

Docker-Exploration, Release 1.0.0

62

Chapter 22. Kubernetes Management Techniques

CHAPTER
TWENTYTHREE

INDICES AND TABLES

* genindex
* modindex

¢ search

63

	Docker used for documentation : Docker CE (Community Edition)
	Some Basic Docker Commands
	Port
	What happens behind docker run
	Points to Notice
	Examples
	nginx
	mongo
	mysql

	Docker Networks
	DNS Naming (inter container communication)
	try this

	IMAGE
	Image Layers
	Image representation

	DOCKERFILE
	PRUNE
	Container lifetime and persistent data
	PERSISTENT DATA
	Docker Compose
	docker-compose CLI
	docker-compose versioning

	Containers Everywhere
	Some major tasks

	Docker Swarm - container orchestration
	docker swarm init
	PLAYGROUND
	Steps

	Overlay Multi Host Networking
	Routing Mesh (Internal Load Balancer)

	docker stack
	Production Grade Compose

	docker secrets
	Swarm App LifeCycle
	Kubernetes
	sandbox
	Other flavours
	Cloud providers
	Terminologies
	in play with k8s
	Scaling ReplicaSets
	Service Types
	ClusterIP (default)
	NodePort
	LoadBalancer
	ExternalName

	Kubernetes Management Techniques
	Generators (Automation behind commands)
	Management approaches
	Kubernetes Configuration YAML
	Labels and Annotations
	Label Selectors

	Storage in K8s
	Ingress Controller
	Custom resources
	Higher Deployment Abstractions
	Namespaces
	Docker Security
	Docker Bench Sceurity

	Indices and tables

